Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Obstet Gynecol ; 140(2): 195-203, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-2029090

ABSTRACT

OBJECTIVE: To evaluate whether the use of inhaled nitric oxide (iNO)200 improves respiratory function. METHODS: This retrospective cohort study used data from pregnant patients hospitalized with severe bilateral coronavirus disease 2019 (COVID-19) pneumonia at four teaching hospitals between March 2020 and December 2021. Two cohorts were identified: 1) those receiving standard of care alone (SoC cohort) and 2) those receiving iNO200 for 30 minutes twice daily in addition to standard of care alone (iNO200 cohort). Inhaled nitric oxide, as a novel therapy, was offered only at one hospital. The prespecified primary outcome was days free from any oxygen supplementation at 28 days postadmission. Secondary outcomes were hospital length of stay, rate of intubation, and intensive care unit (ICU) length of stay. The multivariable-adjusted regression analyses accounted for age, body mass index, gestational age, use of steroids, remdesivir, and the study center. RESULTS: Seventy-one pregnant patients were hospitalized for severe bilateral COVID-19 pneumonia: 51 in the SoC cohort and 20 in the iNO200 cohort. Patients receiving iNO200 had more oxygen supplementation-free days (iNO200: median [interquartile range], 24 [23-26] days vs standard of care alone: 22 [14-24] days, P=.01) compared with patients in the SoC cohort. In the multivariable-adjusted analyses, iNO200 was associated with 63.2% (95% CI 36.2-95.4%; P<.001) more days free from oxygen supplementation, 59.7% (95% CI 56.0-63.2%; P<.001) shorter ICU length of stay, and 63.6% (95% CI 55.1-70.8%; P<.001) shorter hospital length of stay. No iNO200-related adverse events were reported. CONCLUSION: In pregnant patients with severe bilateral COVID-19 pneumonia, iNO200 was associated with a reduced need for oxygen supplementation and shorter hospital stay.


Subject(s)
COVID-19 Drug Treatment , Female , Humans , Nitric Oxide , Oxygen , Pregnancy , Retrospective Studies , SARS-CoV-2
2.
Nitric Oxide ; 116: 7-13, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1356375

ABSTRACT

BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19). METHODS: This is an interventional study to determine whether NO at 160 parts-per-million (ppm) inhaled for 30 min twice daily might be beneficial and safe in non-intubated COVID-19 patients. RESULTS: Twenty-nine COVID-19 patients received a total of 217 intermittent inhaled NO treatments for 30 min at 160 ppm between March and June 2020. Breathing NO acutely decreased the respiratory rate of tachypneic patients and improved oxygenation in hypoxemic patients. The maximum level of nitrogen dioxide delivered was 1.5 ppm. The maximum level of methemoglobin (MetHb) during the treatments was 4.7%. MetHb decreased in all patients 5 min after discontinuing NO administration. No adverse events during treatment, such as hypoxemia, hypotension, or acute kidney injury during hospitalization occurred. In our NO treated patients, one patient of 29 underwent intubation and mechanical ventilation, and none died. The median hospital length of stay was 6 days [interquartile range 4-8]. No discharged patients required hospital readmission nor developed COVID-19 related long-term sequelae within 28 days of follow-up. CONCLUSIONS: In spontaneous breathing patients with COVID-19, the administration of inhaled NO at 160 ppm for 30 min twice daily promptly improved the respiratory rate of tachypneic patients and systemic oxygenation of hypoxemic patients. No adverse events were observed. None of the subjects was readmitted or had long-term COVID-19 sequelae.


Subject(s)
COVID-19 Drug Treatment , Hospitalization , Nitric Oxide/administration & dosage , Pneumonia, Viral/drug therapy , Respiration/drug effects , Administration, Inhalation , COVID-19/complications , COVID-19/virology , Dose-Response Relationship, Drug , Humans , Nitric Oxide/pharmacology , Nitric Oxide/therapeutic use , Pneumonia, Viral/complications
3.
Front Pharmacol ; 12: 631784, 2021.
Article in English | MEDLINE | ID: covidwho-1175551

ABSTRACT

Healthcare innovation has never been more important as it is now when the world is facing up to the unprecedented challenges brought by the COVID-19 pandemic. Within addictions services in Scotland, the priority has been to tackle our rising drug related death rate by maintaining and improving access to treatment while protecting frontline workers and managing operational challenges as a result of the pandemic. We present here a case study of five patients with opioid use disorder whose treatment represents a confluence of three important Medication Assisted Treatment (MAT) service innovations. The first was a low threshold drop in and outreach MAT service to rapidly and safely initiate opiate replacement therapy (ORT). The second was the provision of a microdosing regimen to enable same day induction to oral buprenorphine while minimizing the risk of precipitated opioid withdrawals and/or treatment disengagement. The third was rapid transitioning to an injectable long-acting buprenorphine depot which reduced unnecessary face to face patient contact and treatment non-adherence. This case study of five patients highlights the valuable role that buprenorphine microdosing can play in making induction to long-acting buprenorphine depot feasible to a broader range of patients, including those on a high dose methadone treatment regime.

4.
J Intensive Care Med ; 36(8): 900-909, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1158184

ABSTRACT

BACKGROUND: Right ventricular (RV) dysfunction is common and associated with worse outcomes in patients with coronavirus disease 2019 (COVID-19). In non-COVID-19 acute respiratory distress syndrome, RV dysfunction develops due to pulmonary hypoxic vasoconstriction, inflammation, and alveolar overdistension or atelectasis. Although similar pathogenic mechanisms may induce RV dysfunction in COVID-19, other COVID-19-specific pathology, such as pulmonary endothelialitis, thrombosis, or myocarditis, may also affect RV function. We quantified RV dysfunction by echocardiographic strain analysis and investigated its correlation with disease severity, ventilatory parameters, biomarkers, and imaging findings in critically ill COVID-19 patients. METHODS: We determined RV free wall longitudinal strain (FWLS) in 32 patients receiving mechanical ventilation for COVID-19-associated respiratory failure. Demographics, comorbid conditions, ventilatory parameters, medications, and laboratory findings were extracted from the medical record. Chest imaging was assessed to determine the severity of lung disease and the presence of pulmonary embolism. RESULTS: Abnormal FWLS was present in 66% of mechanically ventilated COVID-19 patients and was associated with higher lung compliance (39.6 vs 29.4 mL/cmH2O, P = 0.016), lower airway plateau pressures (21 vs 24 cmH2O, P = 0.043), lower tidal volume ventilation (5.74 vs 6.17 cc/kg, P = 0.031), and reduced left ventricular function. FWLS correlated negatively with age (r = -0.414, P = 0.018) and with serum troponin (r = 0.402, P = 0.034). Patients with abnormal RV strain did not exhibit decreased oxygenation or increased disease severity based on inflammatory markers, vasopressor requirements, or chest imaging findings. CONCLUSIONS: RV dysfunction is common among critically ill COVID-19 patients and is not related to abnormal lung mechanics or ventilatory pressures. Instead, patients with abnormal FWLS had more favorable lung compliance. RV dysfunction may be secondary to diffuse intravascular micro- and macro-thrombosis or direct myocardial damage. TRIAL REGISTRATION: National Institutes of Health #NCT04306393. Registered 10 March 2020, https://clinicaltrials.gov/ct2/show/NCT04306393.


Subject(s)
COVID-19/complications , Respiratory Insufficiency/virology , Ventricular Dysfunction, Right/virology , Adult , Aged , Critical Illness , Female , Heart Ventricles , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Respiration, Artificial , Severity of Illness Index , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right
5.
Anesth Analg ; 131(5): e234-e235, 2020 11.
Article in English | MEDLINE | ID: covidwho-940042
7.
Postgrad Med ; 133(1): 20-27, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-759669

ABSTRACT

While COVID-19 has primarily been characterized by the respiratory impact of viral pneumonia, it affects every organ system and carries a high consequent risk of death in critically ill patients. Higher sequential organ failure assessment (SOFA) scores have been associated with increased mortality in patients critically ill patients with COVID-19. It is important that clinicians managing critically ill COVID-19 patients be aware of the multisystem impact of the disease so that care can be focused on the prevention of end-organ injuries to potentially improve clinical outcomes. We review the multisystem complications of COVID-19 and associated treatment strategies to improve the care of critically ill COVID-19 patients.


Subject(s)
COVID-19/physiopathology , COVID-19/mortality , Cardiovascular Diseases/physiopathology , Critical Illness , Cytokines/biosynthesis , Endocrine System Diseases/physiopathology , Gastrointestinal Diseases/physiopathology , Hematologic Diseases/physiopathology , Humans , Kidney Diseases/physiopathology , Musculoskeletal Diseases/physiopathology , Nervous System Diseases/physiopathology , Obesity/physiopathology , Organ Dysfunction Scores , Respiratory Tract Diseases/physiopathology , Risk Factors , SARS-CoV-2 , Skin Diseases/physiopathology , Systemic Inflammatory Response Syndrome/physiopathology
8.
Obstet Gynecol ; 136(6): 1109-1113, 2020 12.
Article in English | MEDLINE | ID: covidwho-733344

ABSTRACT

BACKGROUND: Rescue therapies to treat or prevent progression of coronavirus disease 2019 (COVID-19) hypoxic respiratory failure in pregnant patients are lacking. METHOD: To treat pregnant patients meeting criteria for severe or critical COVID-19 with high-dose (160-200 ppm) nitric oxide by mask twice daily and report on their clinical response. EXPERIENCE: Six pregnant patients were admitted with severe or critical COVID-19 at Massachusetts General Hospital from April to June 2020 and received inhalational nitric oxide therapy. All patients tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A total of 39 treatments was administered. An improvement in cardiopulmonary function was observed after commencing nitric oxide gas, as evidenced by an increase in systemic oxygenation in each administration session among those with evidence of baseline hypoxemia and reduction of tachypnea in all patients in each session. Three patients delivered a total of four neonates during hospitalization. At 28-day follow-up, all three patients were home and their newborns were in good condition. Three of the six patients remain pregnant after hospital discharge. Five patients had two negative test results on nasopharyngeal swab for SARS-CoV-2 within 28 days from admission. CONCLUSION: Nitric oxide at 160-200 ppm is easy to use, appears to be well tolerated, and might be of benefit in pregnant patients with COVID-19 with hypoxic respiratory failure.


Subject(s)
Coronavirus Infections/drug therapy , Nitric Oxide/administration & dosage , Pneumonia, Viral/drug therapy , Pregnancy Complications, Infectious/drug therapy , Administration, Inhalation , Betacoronavirus , COVID-19 , Female , Humans , Massachusetts , Pandemics , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , Treatment Outcome
9.
Crit Care Explor ; 2(8): e0179, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-729203

ABSTRACT

OBJECTIVES: Patients with acute respiratory distress syndrome are at risk for developing cardiac dysfunction which is independently associated with worse outcomes. Transthoracic echocardiography is an ideal imaging modality for goal-directed assessment and optimization of cardiac function and volume status. Prone positioning, while demonstrated to improve oxygenation, offload the right ventricle, and reduce short-term mortality in acute respiratory distress syndrome, has previously precluded transthoracic echocardiography on these patients. The purpose of this study was to assess the ability to perform focused transthoracic echocardiography examinations on acute respiratory distress syndrome patients in the prone position. DESIGN: We performed a cross-sectional study of critically ill patients hospitalized for acute respiratory distress syndrome due to coronavirus disease 2019. SETTING: This study was conducted in medical and surgical intensive units in a tertiary hospital. PATIENTS: We examined 27 mechanically ventilated and prone patients with acute respiratory distress syndrome due to coronavirus disease 2019. Participants were examined at the time of enrollment in an ongoing clinical trial (NCT04306393), and no patients were excluded from echocardiographic analysis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We were able to perform transthoracic echocardiography and obtain satisfactory images for quantitative assessment of right ventricular function in 24 out of 27 (88.9%) and left ventricular function in 26 out of 27 (96.3%) of patients in the prone position, including many who were obese and on high levels of positive end-expiratory pressure (≥ 15 cm H2O). CONCLUSIONS: Transthoracic echocardiography can be performed at the prone patient's bedside by critical care intensivists. These findings encourage the use of focused transthoracic echocardiography for goal-directed cardiac assessment in acute respiratory distress syndrome patients undergoing prone positioning.

10.
Crit Care Explor ; 2(6): e0146, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-605857

ABSTRACT

The global spread of coronavirus disease 2019 has accelerated the adoption of technologies that facilitate patient care while reducing viral spread. We illustrate a proof of concept application of teleguidance to ultrasound-guided bedside procedures as an example of an innovative solution that has been used at our institution to maximize patient and provider safety.

12.
Crit Care ; 24(1): 292, 2020 06 05.
Article in English | MEDLINE | ID: covidwho-544126

ABSTRACT

Those involved in the airway management of COVID-19 patients are particularly at risk. Here, we describe a practical, stepwise protocol for safe in-hospital airway management in patients with suspected or confirmed COVID-19 infection.


Subject(s)
Airway Management , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , COVID-19 , Hospitalization , Humans , Pandemics
13.
Anesth Analg ; 131(2): 345-350, 2020 08.
Article in English | MEDLINE | ID: covidwho-196118

ABSTRACT

This review highlights the ultrasound findings reported from a number of studies and case reports and discusses the unifying findings from coronavirus disease (COVID-19) patients and from the avian (H7N9) and H1N1 influenza epidemics. We discuss the potential role for portable point-of-care ultrasound (PPOCUS) as a safe and effective bedside option in the initial evaluation, management, and monitoring of disease progression in patients with confirmed or suspected COVID-19 infection.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/diagnostic imaging , Lung/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Point-of-Care Systems , Point-of-Care Testing , Ultrasonography , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Humans , Infection Control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/diagnostic imaging , Influenza, Human/virology , Lung/virology , Male , Middle Aged , Occupational Exposure/adverse effects , Occupational Exposure/prevention & control , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , Risk Factors , SARS-CoV-2 , Ultrasonography/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL